Three-dimensional crystallization of the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.

نویسندگان

  • M Joanne Lemieux
  • Jinmei Song
  • Myong Jin Kim
  • Yafei Huang
  • Anthony Villa
  • Manfred Auer
  • Xiao-Dan Li
  • Da-Neng Wang
چکیده

Here we report the successful three-dimensional crystallization of GlpT, the glycerol-3-phosphate transporter from Escherichia coli inner membrane. GlpT possesses 12 transmembrane alpha-helices and is a member of the major facilitator superfamily. It mediates the exchange of glycerol-3-phosphate for inorganic phosphate across the membrane. Approximately 20 phospholipid molecules per protein, identified as negatively charged phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin, were required for the monodispersity of purified GlpT. Analytical size-exclusion chromatography proved to be efficient in identifying detergents for GlpT monodispersity. Nine such detergents were later used for GlpT crystallization. Screening for crystal nucleation was carried out with a variety of polyethylene glycols as the precipitant over a wide pH range. Subsequent identification of a rigid protein core by limited proteolysis and mass spectroscopy resulted in better-ordered crystals. These crystals exhibited order to 3.7 A resolution in two dimensions. However, the stacking in the third dimension was partially disordered. This stacking problem was overcome by using a detergent mixture and manipulating the ionic interactions in the crystallization solution. The resulting GlpT crystals diffracted isotropically to 3.3 A resolution and were suitable for structure determination by X-ray crystallography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.

The major facilitator superfamily represents the largest group of secondary active membrane transporters in the cell. The 3.3A resolution structure of a member of this protein superfamily, the glycerol-3-phosphate transporter from the Escherichia coli inner membrane, reveals two domains connected by a long central loop. These N- and C-terminal domains, each containing a six-helix bundle, are re...

متن کامل

Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli.

The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Cl...

متن کامل

Crystal structure and mechanism of GlpT, the glycerol-3-phosphate transporter from E. coli.

The major facilitator superfamily represents the largest group of secondary active membrane transporters in prokaryotic and eukaryotic cells. They transport a vast variety of substrates, presumably via similar mechanisms, yet the details of these mechanisms remain unclear. Here we report the 3.3 A resolution structure of a member of this superfamily--GlpT, the glycerol-3-phosphate transporter f...

متن کامل

High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter.

The glycerol-3-phosphate (G3P) transporter, GlpT, from Escherichia coli mediates G3P and inorganic phosphate exchange across the bacterial inner membrane. It possesses 12 transmembrane alpha-helices and is a member of the Major Facilitator Superfamily. Here we report overexpression, purification, and characterization of GlpT. Extensive optimization applied to the DNA construct and cell culture ...

متن کامل

Structural basis of substrate selectivity in the glycerol-3-phosphate: phosphate antiporter GlpT.

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2003